Math 128a – Week 4 Worksheet GSI: Izak, (2/10/21)

2.3 Problems

Problem 1. Come up with a function $f \in C^2[a,b]$ with f(p) = 0 for some $p \in [a,b]$ such that Newtons method fails to converge for any initial guess not equal to p.

 ${\bf Problem~2.~} \textit{Derive the error formula for Newton's method:}$

$$|p - p_{n+1}| \le \frac{M}{2|f'(p_n)|}|p - p_n|^2$$

2.4 Problems

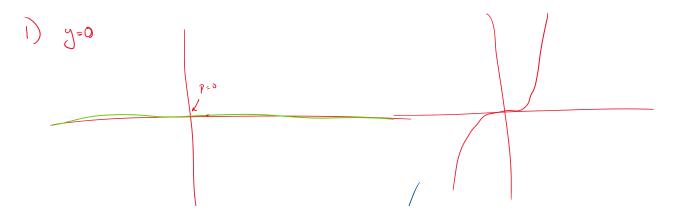
Problem 3. Generalize one of your homework problems. Construct a sequence p_n converging to p at order α with asymptotic error constant λ .

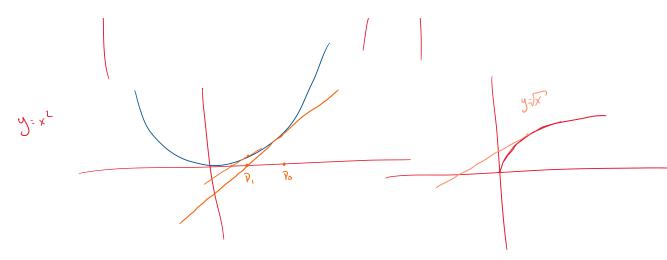
2.5 Problems

Problem 4. Steffensen's method is applied to a function g(x) using $p_0^{(0)} = 1$, $p_2^{(0)} = 3$ to obtain $p_0^{(1)} = .75$. What is $p_1^{(0)}$?

Problem 5. Prove that if p_n converges linearly to p and $\lim_{n\to\infty}\frac{p_{n+1}-p}{p_n-p}<1$, then $\lim_{n\to\infty}\frac{\hat{p}_n-p}{p_n-p}=0$ where \hat{p}_n comes from Aitken's Δ^2 method. (Hint: let $\delta_n=(p_{n+1}-p)/(p_n-p)-\lambda$ and show that $\lim_{n\to\infty}\delta_n=0$. Then express $(\hat{p}_{n+1}-p)/(p_n-p)$ in terms of δ_n,δ_{n+1} and λ).

1





$$|P - P_{n+1}|$$

$$|P_{n+1} = P_n - \frac{f(P_n)}{f'(P_n)}|$$

$$|P_n - P_{n+1}| = |\frac{f(P_n)}{f'(P_n)}|$$

Assuming
$$\int \xi \, C^2 \int (p) = 0 \int (p) \neq 0$$

Taylor about $\int (x) = \int (p) + \int (p) (x-p) + \int (\xi) (x-p)^2$
 $= \int (p) (x-p) + \int (\xi) (x-p)^2$
 $Q = \chi = \eta_0$

$$\frac{f(P_n)}{f(P_n)} = \frac{f'(P)(P_n - P) + f''(g)(P_n - P)^2}{2}$$

$$\frac{f(P_n)}{f'(P_n)} = \frac{f'(P)(P_n - P)}{f'(P_n)} + \frac{f''(g)(P_n - P)^2}{2f'(P_n)}$$

$$\frac{f'(P_n)}{f'(P_n)} \leq \frac{f'(P)(P_n - P)}{f'(P_n)} + \frac{IR_n - P)^2}{2lf'(P_n)}$$

$$\frac{f''(P)}{f''(P)} = 0 = 0 \text{ we get } = 0$$

Then 29 in book.

$$P_{n} = \sum_{i=0}^{n} \frac{P_{n} - P_{i}}{P_{n} - P_{i}} = \frac{10^{-2x^{3}}}{(10^{-2x^{3}})^{2x}} = \frac{2}{10^{-2x^{3}}}$$

$$\frac{\sum_{i=0}^{n+1} \frac{P_{n}}{P_{n} - P_{i}}}{\sum_{i=0}^{n+1} \frac{P_{n}}{P_{n}} - P_{i}} = \frac{1}{10^{-2x^{3}}}$$

$$P_{n} = \sum_{i=0}^{n+1} \frac{P_{n}}{P_{n}} = \frac{1}{10^{-2x^{3}}}$$